Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Role of the Rap2/TNIK kinase pathway in regulation of LRP6 stability for Wnt signaling.

The Wnt/β-catenin signaling pathway plays critical roles in early embryonic development, stem cell biology and human diseases including cancers. Although Rap2, a member of Ras GTPase family, is essential for the Wnt/β-catenin pathway during the body axis specification in Xenopus embryo, the mechanism underlying its regulation of Wnt signaling remains poorly understood. Here, we show that Rap2 is implicated in control of the stability of Wnt receptor, low-density lipoprotein receptor-related protein 6 (LRP6). Knockdown of Rap2 resulted in the proteasome and/or lysosome-dependent degradation of LRP6 both in the presence and absence of Wnt ligand stimulation. In line with this, constitutively active LRP6 lacking its extracellular domain, which is constitutively phosphorylated and resides in intracellular vesicles, was also degraded in the Rap2-silenced cells. In addition, Rap2 and LRP6 associated physically with each other. Furthermore, we found that TRAF2/Nck-interacting kinase (TNIK), a member of the Ste20 protein family, acts as a downstream effector of Rap2 in control of LRP6 stabilization. Consistently, TNIK could rescue the inhibitory effects of Rap2 depletion on Wnt-dependent gene transcription, reporter activation and neural crest induction. Taken together, these results suggest that Rap2 acts via TNIK to regulate the stability of LRP6 receptor for Wnt/β-catenin signaling.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app