Add like
Add dislike
Add to saved papers

Endothelial dysfunction in small arteries of essential hypertensive patients: role of cyclooxygenase-2 in oxidative stress generation.

Hypertension 2013 August
Essential hypertensive patients show a reduced nitric oxide availability secondary to oxidative stress generation in peripheral microcirculation. Cyclooxygenase (COX) contributes to reduce nitric oxide availability. We assessed the possible vascular sources of oxidative stress, including COX-1, COX-2, and nicotinamide adenine dinucleotide phosphate oxidase, as determinants of endothelial dysfunction in small arteries isolated from essential hypertensive patients or normotensive controls. Small arteries were dissected after subcutaneous fat biopsies and evaluated on a pressurized micromyograph. Endothelium-dependent vasodilation was assessed by acetylcholine, repeated under NG-nitro-l-arginine methyl ester, SC-560 (COX-1 inhibitor), DuP-697 (COX-2 inhibitor), ascorbic acid, or the nicotinamide adenine dinucleotide phosphate oxidase inhibitors apocynin or diphenylene iodonium. Vascular oxidative stress generation (fluorescent dihydroethidium), COX-1 and COX-2 expression (Western blot), and localization (immunohistochemistry) were also assessed. In controls, response to acetylcholine was blunted by NG-nitro-l-arginine methyl ester (P<0.001) and unmodified by SC-560, DuP-697, or ascorbic acid. In hypertensive patients, relaxation to acetylcholine was blunted, resistant to NG-nitro-l-arginine methyl ester or SC-560, and enhanced (P<0.01) by DuP-697, apocynin, or diphenylene iodonium (P<0.05). Furthermore, in hypertensive patients, response to acetylcholine was normalized by ascorbic acid or apocynin+DuP-697. Intravascular oxidative stress generation was enhanced in hypertensive patients, decreased (P<0.01) by DuP-697, partly attenuated by apocynin or diphenylene iodonium, and prevented by ascorbic acid. Enhanced COX-2 expression and localization in the vascular media of hypertensive patients were also detected. In small resistance arteries of essential hypertensive patients, COX-2 is overexpressed and reduces nitric oxide availability. COX-2 represents a major source of oxidative stress generation, whereas nicotinamide adenine dinucleotide phosphate oxidase plays a minor, but significant, role in promoting superoxide generation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app