JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Efficient bioconjugation of 5-fluoro-5-deoxy-ribose (FDR) to RGD peptides for positron emission tomography (PET) imaging of α(v)β(3) integrin receptor.

The utility of 5-fluoro-5-deoxyribose (FDR) as an efficient bioconjugation agent for radiolabelling of the RGD peptides c(RGDfK) and c(RGDfC) is demonstrated. The bioconjugation is significantly superior to that achieved with 2-fluoro-2-deoxyglucose (FDG) and benefits from the location of the fluorine at C-5, and that ribose is a 5-membered ring sugar rather than a 6-membered ring. Both features favour ring opening to the aldehydic form of the sugar to promote smooth oxime ligation with aminooxy ether functionalised peptides. [(18)F]FDR was prepared in this study by synthesis from fluoride-18 using an automated synthesis protocol adapting that used routinely for [(18)F]FDG. c(RGDfK) was functionalised with an aminooxyacetyl group (Aoa) via its lysine terminus, while c(RGDfC) was functionalised with an aminooxyhexylmaleimide (Ahm) through a cysteine-maleimide conjugation. Bioconjugation of [(18)F]FDR to c(RGDfC)-Ahm proved to be more efficient than c(RGDfK)-Aoa (92% versus 65%). The unlabelled ((19)F) bioconjugates c(RGDfK)-Aoa-FDR and c(RGDfC)-Ahm-FDR were prepared and their in vitro affinity to purified integrin αvβ3 was determined. c(RGDfK)-Aoa-FDR showed the greater affinity. Purified "hot" bioconjugates c(RGDfK)-Aoa-[(18)F]FDR and c(RGDfC)-Ahm-[(18)F]FDR were assayed by incubation with MCF7, LNCaP and PC3 cell lines. In both cases the conjugated RGD peptides showed selectivity for PC3 cells, which express αvβ3 integrin, with the c(RGDfK)-Aoa-[(18)F]FDR demonstrating better binding, consistent with its higher in vitro affinity. The study demonstrates that [(18)F]FDR is an efficient bioconjugation ligand for RGD bioactive peptides.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app