JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
REVIEW
Add like
Add dislike
Add to saved papers

MicroRNAs in the atherosclerotic plaque.

Clinical Chemistry 2013 December
BACKGROUND: MicroRNAs (miRNA, miR) are noncoding RNAs that regulate gene expression by hindering translation. miRNA expression profiles have been shown to differ in vivo and in vitro in many cellular processes associated with cardiovascular diseases (CVDs). The progression of CVDs has also been shown to alter the blood miRNA profile in humans.

CONTENT: We summarize the results of animal and cell experiments concerning the miRNA profile in the atherosclerotic process and the changes which occur in the blood miRNA profile of individuals with CVD. We also survey the relationship of these CVD-related miRNAs and their expression in the human advanced atherosclerotic plaque, thereby providing more insight into miRNA function in human atherosclerotic lesions. The miRNAs miR-126, -134, -145, -146a, -198, -210, -340*, and -92a were found to be expressed differently in the blood of individuals affected and unaffected by CVD. These differences paralleled those seen in tissue comparisons of miRNA expression in advanced atherosclerotic plaques and healthy arteries. Furthermore, several miRNAs associated with atherosclerosis in in vitro studies (such as miR-10a, -126, -145, -146a/b, -185, -210, and -326) were expressed in plaques in a similar pattern as was predicted by the in vitro experiments. The clinical implications of miRNAs in atherosclerosis as biomarkers and as possible drug targets are also reviewed.

SUMMARY: miRNA profiles in in vitro and in vivo studies as well as in human peripheral blood are quite representative of the miRNA expression in human atherosclerotic plaques. miRNAs appear promising in terms of future clinical applications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app