JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Tumor suppressor functions of miR-133a in colorectal cancer.

UNLABELLED: Dysregulated microRNA (miRNA) expression was profiled through a miRNA array comparison between human colorectal cancer tumors and their adjacent normal tissues. Specifically, using laser capture micro-dissection, miR-133a was shown to be significantly downregulated in primary colorectal cancer specimens compared with matched adjacent normal tissue. Ectopic expression of miR-133a significantly suppressed colorectal cancer cell growth in vitro and in vivo. Cell-cycle analysis revealed that miR-133a induced a G0/G1-phase arrest, concomitant with the upregulation of the key G1-phase regulator p21(Cip1). We further revealed that miR-133a markedly increased p53 protein and induced p21(Cip1) transcription. Studies in silico revealed that the 3'UTR of the ring finger and FYVE-like domain containing E3-ubiquitin protein ligase (RFFL), which regulates p53 protein, contains an evolutionarily conserved miR-133a binding site. miR-133a repressed RFFL-3'UTR reporter activity and reduced RFFL protein levels, indicating that miR-133a directly bound to RFFL mRNA and inhibited RFFL translation. Moreover, miR-133a sensitized colon cancer cells to doxorubicin and oxaliplatin by enhancing apoptosis and inhibiting cell proliferation. These data add weight to the significance of miR-133a in the development of CRC.

IMPLICATIONS: miR-133a serves as a potential tumor suppressor upstream of p53 in colorectal cancer and may sensitize cells to therapeutics.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app