Using historical control information for the design and analysis of clinical trials with overdispersed count data

Sandro Gsteiger, Beat Neuenschwander, Francois Mercier, Heinz Schmidli
Statistics in Medicine 2013 September 20, 32 (21): 3609-22
Results from clinical trials are never interpreted in isolation. Previous studies in a similar setting provide valuable information for designing a new trial. For the analysis, however, the use of trial-external information is challenging and therefore controversial, although it seems attractive from an ethical or efficiency perspective. Here, we consider the formal use of historical control data on lesion counts in a multiple sclerosis trial. The approach to incorporating historical data is Bayesian, in that historical information is captured in a prior that accounts for between-trial variability and hence leads to discounting of historical data. We extend the meta-analytic-predictive approach, a random-effects meta-analysis of historical data combined with the prediction of the parameter in the new trial, from normal to overdispersed count data of individual-patient or aggregate-trial format. We discuss the prior derivation for the lesion mean count in the control group of the new trial for two populations. For the general population (without baseline enrichment), with 1936 control patients from nine historical trials, between-trial variability was moderate to substantial, leading to a prior effective sample size of about 45 control patients. For the more homogenous population (with enrichment), with 412 control patients from five historical trials, the prior effective sample size was approximately 63 patients. Although these numbers are small relative to the historical data, they are fairly typical in settings where between-trial heterogeneity is moderate. For phase II, reducing the number of control patients by 45 or by 63 may be an attractive option in many multiple sclerosis trials.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"