Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Inhibition of pan-class I phosphatidyl-inositol-3-kinase by NVP-BKM120 effectively blocks proliferation and induces cell death in diffuse large B-cell lymphoma.

Leukemia & Lymphoma 2014 Februrary
Diffuse large B-cell lymphoma (DLBCL) is the most frequent aggressive lymphoma, with a great demand for novel treatments for relapsing and refractory disease. Constitutive activation of the phosphatidyl-inositol-3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) signaling pathway is often detected in this lymphoma. Inhibition of this signaling cascade with the pan-class I PI3K inhibitor NVP-BKM120 decreased cell proliferation and increased apoptotic cell death. DLBCL proliferation was further decreased if NVP-BKM120-induced autophagy was blocked. Treatment with NVP-BKM120 was associated with an increase of the pro-apoptotic BH3-only proteins Puma and Bim and down-regulation of the anti-apoptotic Bcl-xL and Mcl-1. Translation of Bcl-xL and Mcl-1 is facilitated by cap-dependent mRNA translation, a process that was partially inhibited by NVP-BKM120. Overall, we demonstrated here the potential of NVP-BKM120 for the treatment of DLBCL.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app