Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Feasibility of targeting ischaemia-related ventricular arrhythmias by mimicry of endogenous protection by endocannabinoids.

BACKGROUND AND PURPOSE: The hypothesis that endocannabinoids protect hearts against ventricular fibrillation (VF) induced by myocardial ischaemia and reperfusion was examined, and the concept that cannabinoids may represent a new class of anti-VF drug was tested.

EXPERIMENTAL APPROACH: In rat isolated hearts (Langendorff perfusion), VF evoked by reperfusion after 60 min regional ischaemia is known to be exacerbated by inhibitors of endogenous protectants such as nitric oxide. This preparation was used to assay the effects of cannabinoid agonists and antagonists, and the protocols were varied to examine mechanisms.

KEY RESULTS: Reperfusion-induced VF was not facilitated by relatively selective CB1 (1 μM AM251) or CB2 (1 μM AM630) antagonists. VF evoked during early (30 min) acute ischaemia was also unaffected. However, AM251 significantly increased the incidence of VF and the duration of VF episodes occurring during the later stage of acute ischaemia (30-60 min). AM630 had no such effects. In a separate study, cannabinoid perfusion (anandamide or 2-arachidonoylglycerol, both 0.01-1 μM) failed to reduce VF incidence concentration-dependently during 30 min ischaemia. In all these studies, changes in ancillary variables (QT, PR, heart rate) were unrelated to changes in VF.

CONCLUSIONS AND IMPLICATIONS: Endocannabinoids are not endogenous anti-VF mediators during reperfusion, but may have a weak protective effect during the late stages of ischaemia, mediated via CB1 agonism. This does not suggest endocannabinoids are important endogenous protectants in these settings, or that CB1 (or CB2) receptors are useful novel targets for developing drugs for VF.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app