JOURNAL ARTICLE
RETRACTED PUBLICATION
Add like
Add dislike
Add to saved papers

Diamond decorated with copper nanoparticles for electrochemical reduction of carbon dioxide.

Electrochemical CO2 reduction has been investigated on a planar diamond electrode in aqueous and nonaqueous solutions. On a diamond electrode decorated with copper nanoparticles, CO2 reduction starts from -0.1 V versus a normal hydrogen electrode (NHE) when a mixture of water and ionic liquid ([H2O] = 10 μM) is used. The current density reaches 5.1 ± 0.1 mA cm(-2) for CO2 reduction at a potential of -1.3 V versus NHE. The main products are formic acid and formaldehyde. Moreover, the electrode system is stable and has a long lifetime. It is thus promising to be applied in the future for mass production of industrial chemicals and liquid fuels using CO2 as the source of raw material.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app