Comparative Study
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Characterization of cannabinoid receptor ligands in tissues natively expressing cannabinoid CB2 receptors.

BACKGROUND AND PURPOSE: Although cannabinoid CB₂ receptor ligands have been widely characterized in recombinant systems in vitro, little pharmacological characterization has been performed in tissues natively expressing CB₂ receptors. The aim of this study was to compare the pharmacology of CB₂ receptor ligands in tissue natively expressing CB₂ receptors (human, rat and mouse spleen) and hCB₂-transfected CHO cells.

EXPERIMENTAL APPROACH: We tested the ability of well-known cannabinoid CB₂ receptor ligands to stimulate or inhibit [³⁵S]GTPγS binding to mouse, rat and human spleen membranes and to hCB₂-transfected CHO cell membranes. cAMP assays were also performed in hCB₂-CHO cells.

KEY RESULTS: The data presented demonstrate that: (i) CP 55,940, WIN 55,212-2 and JWH 133 behave as CB₂ receptor full agonists both in spleen and hCB₂-CHO cells, in both [³⁵S]GTPγS and cAMP assays; (ii) JWH 015 behaves as a low-efficacy agonist in spleen as well as in hCB₂-CHO cells when tested in the [³⁵S]GTPγS assay, while it displays full agonism when tested in the cAMP assay using hCB₂-CHO cells; (iii) (R)-AM 1241 and GW 405833 behave as agonists in the [³⁵S]GTPγS assay using spleen, instead it behaves as a low-efficacy inverse agonist in hCB₂-CHO cells; and (iv) SR 144528, AM 630 and JTE 907 behave as CB₂ receptor inverse agonists in all the tissues.

CONCLUSION AND IMPLICATIONS: Our results demonstrate that CB₂ receptor ligands can display differential pharmacology when assays are conducted in tissues that natively express CB₂ receptors and imply that conclusions from recombinant CB₂ receptors should be treated with caution.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app