Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Effect of different acclimation methods on the performance of microbial fuel cells using phenol as substrate.

Single-chamber microbial fuel cells (MFCs) with air-cathode were constructed. MFCs were fed different feedstocks during their inoculation, their role on phenol degradation and MFC performance were investigated. The results showed that the MFC inoculated using glucose exhibited the highest power density (31.3 mW m(-2)) when phenol was used as the sole substrate for MFC. The corresponding biodegradation kinetic constant was obtained at 0.035 h(-1), at an initial phenol concentration of 600 mg L(-1). Moreover, the phenol degradation rates in this MFC with closed circuit were 9.8-16.5% higher than those in MFC with opened circuit. The cyclic voltammograms revealed a different electrochemical activity of the anode biofilms in the MFC, and this led to differences in performance of the MFCs with phenol as sole substrate. These results demonstrated that phenol degradation and power production are affected by current generation and type of acclimation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app