JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Biomass catalytic pyrolysis to produce olefins and aromatics with a physically mixed catalyst.

Zeolite catalysts with micropores present good catalytic characteristics in biomass catalytic pyrolysis process. However, large-molecule oxygenates produced from pyrolysis cannot enter their pores and would form coke on their surfaces, which decreases hydrocarbon yield and deactivates catalyst rapidly. This paper proposed adding some mesoporous and macroporous catalysts (Gamma-Al2O3, CaO and MCM-41) in the microporous catalyst (LOSA-1) for biomass catalytic pyrolysis. The added catalysts were used to crack the large-molecule oxygenates into small-molecule oxygenates, while LOSA-1 was used to convert these small-molecule oxygenates into olefins and aromatics. The results show that all the additives in LOSA-1 enhanced hydrocarbon yield obviously. The maximum aromatic+olefin yield of 25.3% obtained with 10% Gamma-Al2O3/90% LOSA-1, which was boosted by 39.8% compared to that obtained with pure LOSA-1. Besides, all the additives in LOSA-1 improved the selectivities of low-carbon components in olefins and aromatics significantly.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app