Add like
Add dislike
Add to saved papers

Overexpression of a chrysanthemum transcription factor gene, DgWRKY3, in tobacco enhances tolerance to salt stress.

WRKY transcription factor genes (TFs) play important roles in response to various abiotic stresses. However, the roles of the chrysanthemum WRKY genes in abiotic stress response remain obscure. In this study, we functionally characterized a novel WRKY gene, DgWRKY3, from chrysanthemum (Dendranthema grandiflorum). Its expression in the chrysanthemum was up-regulated by salinity or dehydration stress, but not by abscisic acid (ABA). The DgWRKY3-overexpression tobacco plants increase salt tolerance compared with wild-type (WT) tobacco plants. The increased levels of proline were observed in transgenic plants compared to WT plants under salt stress. In addition, the DgWRKY3 transgenic plants reduced accumulation of malondialdehyde (MDA) and hydrogen peroxide (H2O2) compared with WT plants, accompanied by higher activities of antioxidant enzymes including superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX) and the greater accumulation of antioxidants including ascorbate (AsA) and glutathione (GSH) under salt stress. Moreover, the DgWRKY3 transgenic plants enhanced the expression of stress-related genes involved in osmotic adjustment and membrane protection (NtP5CS, NtLEA5, and NtERD10D) and oxidative stress response (NtSOD, NtPOD, NtCAT, and NtAPX) under salt stress. However, no significant difference in the expression of stress-related genes (NtP5CS, NtLEA5, NtERD10D, NtSOD, NtPOD, NtCAT, and NtAPX) was found between the DgWRKY3-overexpression and WT tobacco plants under normal conditions, despite the fact that the constitutive promoter was used to drive DgWRKY3. These findings suggest that DgWRKY3 functions as a positive regulator to mediate tolerance of plants to salt stress.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app