JOURNAL ARTICLE

Smooth muscle-selective inhibition of nuclear factor-κB attenuates smooth muscle phenotypic switching and neointima formation following vascular injury

Tadashi Yoshida, Maho Yamashita, Chihiro Horimai, Matsuhiko Hayashi
Journal of the American Heart Association 2013, 2 (3): e000230
23702880

BACKGROUND: Vascular proliferative diseases such as atherosclerosis are inflammatory disorders involving multiple cell types including macrophages, lymphocytes, endothelial cells, and smooth muscle cells (SMCs). Although activation of the nuclear factor-κB (NF-κB) pathway in vessels has been shown to be critical for the progression of vascular diseases, the cell-autonomous role of NF-κB within SMCs has not been fully understood.

METHODS AND RESULTS: We generated SMC-selective truncated IκB expressing (SM22α-Cre/IκBΔN) mice, in which NF-κB was inhibited selectively in SMCs, and analyzed their phenotype following carotid injury. Results showed that neointima formation was markedly reduced in SM22α-Cre/IκBΔN mice after injury. Although vascular injury induced downregulation of expression of SMC differentiation markers and myocardin, a potent activator of SMC differentiation markers, repression of these markers and myocardin was attenuated in SM22α-Cre/IκBΔN mice. Consistent with these findings, NF-κB activation by interleukin-1β (IL-1β) decreased expression of SMC differentiation markers as well as myocardin in cultured SMCs. Inhibition of NF-κB signaling by BAY 11-7082 attenuated repressive effects of IL-1β. Of interest, Krüppel-like factor 4 (Klf4), a transcription factor critical for regulating SMC differentiation and proliferation, was also involved in IL-1β-mediated myocardin repression. Promoter analyses and chromatin immunoprecipitation assays revealed that NF-κB repressed myocardin by binding to the myocardin promoter region in concert with Klf4.

CONCLUSIONS: These results provide novel evidence that activation of the NF-κB pathway cell-autonomously mediates SMC phenotypic switching and contributes to neointima formation following vascular injury.

Full Text Links

Find Full Text Links for this Article

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read
23702880
×

Save your favorite articles in one place with a free QxMD account.

×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"