JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Role of chemical structures and the 1331T>C bile salt export pump polymorphism in idiosyncratic drug-induced liver injury.

BACKGROUND & AIMS: Several pharmaceutical compounds have been shown to exert inhibitory effects on the bile salt export pump (BSEP) encoded by the ABCB11 gene. We analysed the combined effect on drug-induced liver injury (DILI) development of the ABCB11 1331T>C polymorphism and the presence of specific chemical moieties, with known BSEP inhibiting properties, in the causative drug.

METHODS: Genotyping using a TaqMan 5' allelic discrimination assay was performed in 188 Spanish DILI patients, 219 healthy controls and 91 sex-, age- and drug-matched controls. A chemical structure analysis was performed for each individual causative drug.

RESULTS: The CC genotype was significantly associated with hepatocellular damage [odds ratio (OR) = 2.1, P = 0.001], particularly in NSAID DILI cases (OR = 3.4, P = 0.007). In addition, the CC genotype was found to be significantly linked to DILI development from drugs causing <50% BSEP inhibition (OR = 1.8, Pc = 0.011). Of the BSEP inhibitory chemical moieties, 59% of the causative drugs contained a carbocyclic system with at least one aromatic ring, corresponding to 61% of the total cases. The C allele was significantly more frequent in DILI cases containing this chemical moiety, which appear to be conditioned on the ABCB11 1331T>C polymorphism in the absence of other BSEP inhibitory structures.

CONCLUSION: Patients carrying the C allele in the ABCB11 1331T>C polymorphism are at increased risk of developing hepatocellular type of DILI, when taking drugs containing a carbocyclic system with aromatic rings.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app