Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Gold nanorod-cored biodegradable micelles as a robust and remotely controllable doxorubicin release system for potent inhibition of drug-sensitive and -resistant cancer cells.

Biomacromolecules 2013 July 9
Gold nanorod-cored biodegradable micelles were prepared by coating gold nanorods (AuNRs) with lipoylated poly(ethylene glycol)-b-poly(ε-caprolactone) (PEG-PCL-LA) block copolymer and investigated for remotely triggered release of doxorubicin (DOX) and effective inhibition of drug-sensitive and multidrug-resistant (MDR) cancer cells. The micelles had uniform sizes and excellent colloidal stability. The in vitro release studies showed that drug release from DOX-loaded AuNR-cored micelles (AuNR-M-DOX) was minimal under physiological conditions but markedly enhanced upon NIR irradiation at a low power density of 0.2 W/cm2, most likely due to photothermally induced phase transition of PCL regime. As revealed by confocal microscopy and flow cytometry, NIR could also trigger effective DOX release in drug-sensitive as well as drug-resistant MCF-7 cells. MTT assays showed that antitumor activity of AuNR-M-DOX to drug-sensitive MCF-7 cells was significantly boosted by mild NIR irradiation, reaching a comparable level to free DOX. Most remarkably, AuNR-M-DOX combined with NIR irradiation could also effectively kill drug-resistant MCF-7 cells, in which a cell viability of 38% was observed at a DOX dosage of 10 μg equiv/mL, whereas 100% cell viability was maintained for cells treated with free DOX under otherwise the same conditions. These AuNR-cored biodegradable micelles with high stability, photo-triggered drug release, and effective reversal of multidrug resistance in cancer cells have appeared as a novel platform for targeted cancer therapy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app