Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Biomechanical evaluation of physeal-sparing fixation methods in tibial eminence fractures.

BACKGROUND: Tibial eminence fractures occur most commonly in skeletally immature children. Several techniques using physeal-sparing fracture fixation have been described, but their structural properties have not been evaluated.

PURPOSE: To determine the strength and resistance to displacement of physeal-sparing techniques used to fix tibial eminence fractures.

STUDY DESIGN: Controlled laboratory study.

METHODS: Skeletally immature porcine knees were randomized into 4 treatment groups: (1) ultra-high molecular weight polyethylene suture-suture button (UHMWPE/SB), (2) suture anchor, (3) polydioxanone suture-suture button (PDS/SB), and (4) screw fixation. A prospective analysis of bone mineral density using dual-energy x-ray absorptiometry was performed on all specimens. Fracture fragments were created in a standardized manner and measured for size comparison. After fracture fixation, biomechanical testing was performed with cyclical and load-to-failure protocols by loading the tibia with an anterior shear force.

RESULTS: In load-to-failure testing, screw fixation had a significantly lower median peak failure load (186.4 N; lower quartile [LQ], 158.4 N; upper quartile [UQ], 232.6 N) than did UHMWPE/SB (465.8 N; LQ, 397.8 N; UQ, 527.8 N), suture anchors (440.5 N; LQ, 323.0 N; UQ, 562.3 N), and PDS/SB (404.3 N; LQ, 385.9 N; UQ, 415.6 N). UHMWPE/SB demonstrated a significantly higher median yield load (465.8 N; LQ, 397.8 N; UQ, 527.8 N) than did PDS/SB (306.7 N; LQ, 271.4, N; UQ, 405.7 N) and screw fixation (179.0 N; LQ, 120.2 N; UQ, 232.5 N). During cyclical testing, screw fixation demonstrated significantly lower percentage survival of specimens (0%) compared with the other groups (UHMWPE/SB, 100%; suture anchor, 78%; PDS/SB, 78%). After 1000 cycles of loading, PDS/SB fixation had significantly more median creep (6.76 mm; LQ, 6.34 mm; UQ, 8.28 mm) than did UHMWPE/SB (4.43 mm; LQ, 3.80 mm; UQ, 4.73 mm) and suture anchor fixation (3.06 mm; LQ, 2.59 mm; UQ, 4.28 mm). The lowest median stiffness was observed in the PDS/SB group (48.6 N/mm; LQ, 45.3 N/mm; UQ, 54.2 N/mm). UHMWPE/SB fixation demonstrated a significantly higher median peak failure load after cyclic testing (469.0 N; LQ, 380.6 N; UQ, 507.2 N) than did PDS/SB (237.7 N; LQ, 197.3 N; UQ, 298.3 N) and screw fixation (132.4 N; LQ, 123.7 N; UQ, 180.9 N). Suture anchor fixation had significantly more variance, as demonstrated by width of interquartile range, in peak failure load, yield load, and creep than did other techniques.

CONCLUSION: Physeal-sparing fixation of tibial eminence fractures with UHMWPE suture-suture button is biomechanically superior to both PDS suture-suture button and a single screw at the time of surgery and provides more consistent fixation than do suture anchors.

CLINICAL RELEVANCE: Suture anchors provide inconsistent fixation for tibial eminence fractures.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app