Oxidative stress and antioxidant enzyme activity in South Indian male smokers with chronic obstructive pulmonary disease

Cholendra Arja, Krishna Mohan Surapaneni, Premanand Raya, Chandrasekar Adimoolam, Badhareenadhudu Balisetty, Kodanda Reddy Kanala
Respirology: Official Journal of the Asian Pacific Society of Respirology 2013, 18 (7): 1069-75

BACKGROUND AND OBJECTIVE: Oxidative stress resulting from tobacco smoking has been suggested to play a role in the pathogenesis of chronic obstructive pulmonary disease (COPD). The aim of the present study was to evaluate the oxidant and antioxidant levels in smokers with and without COPD.

METHODS: Two hundred thirty-six patients with COPD and 150 smokers with no respiratory problems were selected. COPD diagnosis and staging was done based on the Global Initiative for Chronic Obstructive Lung Disease criteria. Plasma malondialdehyde (MDA) and erythrocyte glutathione (GSH) concentrations and superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and glutathione-s-transferase (GST) activities were assessed.

RESULTS: COPD patients had higher levels of MDA and lower levels of antioxidants when compared with controls (P < 0.01). Analysis of variance revealed increase in MDA (P < 0.05) and decrease in CAT activity (P < 0.01) and GSH (P < 0.05) level with the progression of the disease. In patients, lung function positively correlated with CAT and SOD activities and negatively correlated with MDA levels (P < 0.01). Smoking history showed negative relation with forced expiratory volume in 1 s (FEV1 )/forced vital capacity (P < 0.05) and positive correlation with CAT activity (P < 0.01). MDA levels negatively correlated with SOD (r = -0.239; P < 0.01). In controls, MDA levels showed significant positive correlation with FEV1 and GPx (P < 0.05) and negative correlation with GSH (P < 0.01). Logistic regression showed association of higher MDA levels with increased risk and higher levels of CAT and GSH with decreased risk of progressing in the disease (odds ratio = 2.938, 2.538, 7.860).

CONCLUSIONS: Our study demonstrates that there is an oxidant antioxidant imbalance in COPD patients and suggests the importance of GPx in maintaining lung function.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"