JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

4-Hydroxyderricin and xanthoangelol from Ashitaba (Angelica keiskei) suppress differentiation of preadiopocytes to adipocytes via AMPK and MAPK pathways.

SCOPE: Adipocytes differentiation is deeply involved in the onset of obesity. 4-Hydroxyderricin (4HD) and xanthoangelol (XAG) are the chalcones that are derived from Ashitaba (Angelica keiskei). In this study, we demonstrated the inhibitory effects of these chalcones on adipocytes differentiation.

METHODS AND RESULTS: 4HD and XAG suppressed intracellular lipid accumulation by Oil red O staining at 5 μM without cytotoxicity. They inhibited adipocytes differentiation accompanied by down-expression of adipocyte-specific transcription factors, CCAAT/enhancer-binding protein-β (C/EBP-β), C/EBP-α, and peroxisome proliferator-activated receptor gamma (PPAR-γ) using RT-PCR and Western blotting analysis. To obtain insights into the underlying mechanism, the activation of AMP-activated protein kinase (AMPK) and mitogen-activated protein kinase pathways was investigated. These two chalcones promoted phosphorylation of AMPK and acetyl CoA carboxylase during differentiation of 3T3-L1 adipocytes accompanied by a decrease in glycerol-3-phosphate acyl transferase-1 and an increase in carnitine palmitoyltransferase-1 mRNA expression. These chalcones also promoted phosphorylation of extracellular signal-regulated kinases and Jun aminoterminal kinases, but not p38. Moreover, the inhibitors for AMPK and extracellular signal-regulated kinases abolished the chalcones-caused down-expression of C/EBP-β, C/EBP-α, and PPAR-γ. Treatment with Jun aminoterminal kinases inhibitor abolished the down-expression of C/EBP-α and PPAR-γ, but not C/EBP-β.

CONCLUSION: 4HD and XAG inhibit adipocytes differentiation through AMPK and mitogen-activated protein kinase pathways, resulting in the down-expression of adipocyte-specific transcription factors.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app