Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Fibroblast growth factor 2 inhibits bone morphogenetic protein 9-induced osteogenic differentiation of mesenchymal stem cells by repressing Smads signaling and subsequently reducing Smads dependent up-regulation of ALK1 and ALK2.

Understanding the interactions between growth factors and bone morphogenic proteins (BMPs) signaling remains a crucial issue to optimize the use of mesenchymal stem cells (MSCs) and BMPs in bone tissue engineering. BMP9 is highly capable of promoting osteogenic differentiation of MSCs. Fibroblast growth factor 2 (FGF2) is abundantly secreted during the healing process of fractures or in surgery bone sites. Herein, we explore the detail effect of FGF2 on BMP9-induced osteogenic differentiation of MSCs. It was found that FGF2 inhibited BMP9-induced osteogenic differentiation by blocking BMP9-induced Smads signaling and subsequently reducing Smads dependent up-regulation of ALK1 and ALK2 in MSCs. This effect was rescued by exogenous expression of ALK1 and ALK2, which are proved to be receptors for BMP9. Our results discovered a clue to explain the mechanism involved in the inhibitory effect of FGF2 on BMP9-induced osteogenic differentiation of MSCs. This crosstalk between FGF2 and BMP9 should be emphasized in the future use of BMP9 in therapeutic purpose of fracture repair.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app