Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

The orphan nuclear receptor small heterodimer partner negatively regulates pancreatic beta cell survival and hyperglycemia in multiple low-dose streptozotocin-induced type 1 diabetic mice.

The small heterodimer partner (SHP; NR0B2) regulates the transcription of a variety of target genes and controls a variety of physiological functions in various tissues. However, the role of SHP in beta cell has not been fully determined yet. We used SHP knockout (SHP KO) mice to investigate the role of SHP in multiple low-dose streptozotocin (MLDS)-induced diabetes. Blood glucose and insulin levels were measured until 20 days, and intraperitoneal glucose tolerance and glucose-stimulated insulin secretion tests were performed. The expression of apoptotic genes and beta cell markers were detected by quantitative realtime-polymerase chain reaction, immunostaining and western blot analysis. SHP KO mice showed significantly lower blood glucose, higher insulin levels, and enhanced glucose tolerance compared with wild type (WT) mice after MLDS treatment. Moreover, beta cell mass and pancreatic insulin content were remarkably increased in SHP KO mice. In the response to glucose stimulation, islets of SHP KO showed increased insulin secretion via up-regulation of beta cell enriched transcription factors compared to WT mice after streptozotocin (STZ) treatment. In quantification for beta cell apoptosis at day 1 post STZ treatment, the SHP KO mice showed significantly increased anti-apoptotic gene expression and decreased release of apoptotic markers cytochrome c, smac/diablo, and only a few apoptotic beta cells were found in SHP KO pancreas through inactivation of caspase-3, compared to those of WT. These data demonstrate that SHP deficiency ameliorates hyperglycemia and preserves islet function by inhibiting apoptosis of pancreatic beta cells and up-regulating of their enriched transcriptional factors.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app