JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Src/p38 MAPK pathway in spinal microglia is involved in mechanical allodynia induced by peri-sciatic administration of recombinant rat TNF-α.

Our previous work has shown that peri-sciatic administration of recombinant rat TNF-α (rrTNF) induces mechanical allodynia and up-regulation of TNF-α in the spinal dorsal horn of rats; however, the underlying mechanisms remain unknown. In the current study, we found that the levels of phosphorylated Src-family kinases (p-SFKs) and phosphorylated p38 mitogen-activated protein kinase (p-p38 MAPK) were significantly increased in bilateral lumbar spinal dorsal horn on day 3 after rrTNF administration. Double immunofluorescence staining revealed that p-SFKs and p-p38 MAPK were nearly restricted to the microglia. Intrathecal delivery of SFKs inhibitor PP2 or p38 MAPK inhibitor SB203580, started 30 min before rrTNF administration and given once daily thereafter for 7 days, blocked mechanical allodynia in bilateral hind paws and increase of TNF-α expression in the spinal dorsal horn. Moreover, PP2 inhibited the up-regulation of p-p38 MAPK induced by rrTNF. We also found that intrathecal injection of TNF-α neutralization antibody alleviated mechanical allodynia in bilateral hind paws and suppressed up-regulation of p-SFKs and p-p38 MAPK. These results suggest that activation of the SFKs/p38 MAPK pathway in microglia and subsequent TNF-α expression in the spinal dorsal horn may contribute to the mechanical hyperalgesic state induced by peri-sciatic administered rrTNF.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app