COMPARATIVE STUDY
EVALUATION STUDIES
JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
VALIDATION STUDIES
Add like
Add dislike
Add to saved papers

Mapping mean and fluctuating velocities by Bayesian multipoint MR velocity encoding-validation against 3D particle tracking velocimetry.

PURPOSE: To validate Bayesian multipoint MR velocity encoding against particle tracking velocimetry for measuring velocity vector fields and fluctuating velocities in a realistic aortic model.

METHODS: An elastic cast of a human aortic arch equipped with an 80 or 64% stenotic section was driven by a pulsatile pump. Peak velocities and peak turbulent kinetic energies of more than 3 m/s and 1000 J/m(3) could be generated. Velocity vector fields and fluctuating velocities were assessed using Bayesian multipoint MR velocity encoding with varying numbers of velocity encoding points and particle tracking velocimetry in the ascending aorta.

RESULTS: Velocities and turbulent kinetic energies measured with 5-fold k-t undersampled 10-point MR velocity encoding and particle tracking velocimetry were found to reveal good correlation with mean differences of -4.8 ± 13.3 cm/s and r(2) = 0.98 for velocities and -21.8 ± 53.9 J/m(3) and r(2) = 0.98 for turbulent kinetic energies, respectively. Three-dimensional velocity patterns of fast flow downstream of the stenoses and regions of elevated velocity fluctuations were found to agree well.

CONCLUSION: Accelerated Bayesian multipoint MR velocity encoding has been demonstrated to be accurate for assessing mean and fluctuating velocities against the reference standard particle tracking velocimetry. The MR method holds considerable potential to map velocity vector fields and turbulent kinetic energies in clinically feasible exam times of <15 min.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app