JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

High-sequence diversity and structural conservation in the human T-cell receptor β junctional region during thymic development.

The T-cell repertoire depends on intrathymic genetic rearrangement events in the T-cell receptor (TCR) locus, followed by positive and negative selection. The repertoire thus generated is highly diverse, but recent data indicate that the recombination of gene segments is less stochastic than previously suggested. Very little is known of the junctional complementarity determining region 3 (CDR3), which is to a large degree not germline encoded. We have analyzed the development of the human TCR β CDR3 repertoire, from the nonselected CD4(+) CD8(+) CD3(-) cells up to the fully selected CD4(+) CD8(-) thymocytes. In addition to spectratyping, a fraction of the CDR3 repertoire was sequenced and a structural in silico analysis of the CDR3 loop characteristics performed. Our data show that the thymic TCR repertoire is extremely diverse, and the effect of the selection events can be detected as a measurable loss of polyclonality in the CDR3 loop. However, the main physicochemical features of the CDR3 loop were found already at the nonselected repertoire and showed no progressive changes during the selection. Thus, the main structural characteristics of the CDR3 loop were already determined by the recombination process and not significantly affected by the extensive thymocyte death associated with selection in the thymus.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app