JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Genetic associations of ketosis and displaced abomasum with milk production traits in early first lactation of Canadian Holsteins.

The aim of this study was to investigate the genetic associations of ketosis and displaced abomasum with milk production traits in early first lactation of Canadian Holsteins. Health data recorded by producers were available from the national dairy cattle health system in Canada. Test-day records of milk, fat, and protein yields were obtained from the routine milk recoding scheme. Ketosis and displaced abomasum were defined as binary traits (0 = healthy; 1 = sick) based on whether or not the cow had at least 1 case of the respective disease in the period from calving to 100 d after calving. Mean frequencies of ketosis and displaced abomasum were 4.1 and 2.7%, respectively. The following milk production traits were considered: milk yield, fat percentage (Fat%), protein percentage (Prot%), fat-to-protein (F:P) ratio, and F:P ratio >1.5. The trait F:P ratio >1.5 was scored as 1 or 0, based on whether or not the cow had an F:P ratio >1.5. For milk production traits, the first (5-30 d in milk) and the second (31-60 d in milk) test days were considered. Data were analyzed using bivariate linear animal models. Average heritabilities of 0.02 and 0.04 were obtained for ketosis and displaced abomasum, respectively. For milk production traits, the lowest heritabilities were obtained for F:P >1.5 (0.04 to 0.08), whereas the highest estimates were found for Prot% (0.27 to 0.38). Ketosis and displaced abomasum were genetically uncorrelated with milk yield in early lactation. Moderate favorable correlations were found between metabolic diseases and milk composition traits. Ketosis was significantly correlated with Fat% (0.33), F:P ratio (0.30), and F:P ratio >1.5 (0.35) at the first test day, whereas all genetic correlations with milk composition traits at the second test day were not significant and close to zero. Significant favorable genetic correlations were also found between displaced abomasum and F:P ratio (0.26), F:P ratio >1.5 (0.25) and Prot% (-0.19) at the first test day. Also, Prot% at the second test day was significantly correlated (-0.16) with displaced abomasum. Overall, a higher Fat% and F:P ratio and a lower Prot% at the first test day were associated with an increased susceptibility to metabolic diseases. As genetic correlations between metabolic diseases and F:P ratio were far from unity, dairy producers should be encouraged to keep accurate and complete health data. This will be expected to yield to more accurate genetic evaluations for metabolic diseases.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app