JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Microarray testing for the presence of toxic algae monitoring programme in Galicia (NW Spain).

Rapid and reliable detection of harmful algae in coastal areas and shellfish farms is an important requirement of monitoring programmes. Monitoring of toxic algae by means of traditional methods, i.e., light microscopy, can be time consuming when many samples have to be routinely analysed. Reliable species identification requires expensive equipment and trained personnel to carry out the analyses. However, all techniques for the monitoring of harmful algae usually require transportation of samples to specialised laboratories. In many monitoring laboratories, results are usually obtained within five working days after receiving the sample and therefore preventative measures are not always possible. Molecular technologies are rapidly improving the detection of phytoplankton and their toxins and the speed at which the results can be obtained. Assays are based on the discrimination of the genetic differences of the different species and species-specific probes can be designed. Such probes have been adapted to a microarray or phylochip format and assessed in several EU monitoring sites. Microarray results are presented for 1 year of field samples validated with cell counts from concentrated samples taken during toxic events from the weekly sampling of the Galician Monitoring Programme done by INTECMAR. The Galician monitoring laboratory does their own counting and their results are posted on their web site within 24 h. There was good correlation between cells present and microarray signals. In the few cases of false negatives, these can be attributed to poor RNA extraction of the target species, viz. Prorocentrum or Dinophysis. Where potential false positives were encountered, the smaller volume taken for cell counts as compared to the upto 300 times more volume taken for RNA extraction for the microarray is likely the cause for these differences, making the microarray more sensitive. The microarray was able to provide better species resolution in Alexandrium and Pseudo-nitzschia. In all cases, the toxins recovered by the toxin array were matched by target species in the array or in the cell counts.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app