Add like
Add dislike
Add to saved papers

The observation of dianions generated by electrochemical reduction of trans-stilbenes in ionic liquids at room temperature.

Three highly aprotic bis(trifluoromethylsulfonyl)amide (NTf2(-)) based ionic liquids (ILs) containing the cations trihexyl(tetradecyl)phosphonium (P6,6,6,14(+)), N-butyl-N-methylpyrrolidinium (Pyrr4,1(+)), and (trimethylamine)(dimethylethylammine)dihydroborate ((N111)(N112)BH2(+)) have been examined as media for room temperature voltammetric detection of highly basic stilbene dianions electrochemically generated by the reduction of trans-stilbene (t-Stb) and its derivatives (4-methoxy-, 2-methoxy-, 4,4'-dimethyl-, and 4-chloromethyl-). Transient and steady-state data in the ILs were compared with results obtained in the molecular solvent acetonitrile. In all media examined, the t-Stb(0/•-) process is chemically and electrochemically reversible with a heterogeneous charge transfer rate constant in CH3CN of 1.5 cm s(-1), as determined by Fourier transformed AC voltammetry. However, further reduction to the dianion was always irreversible in this molecular but weakly acidic solvent. On the other hand, a substantial level of chemical reversibility for the reduction of t-Stb(•-) to t-Stb(2-) on the time scale of cyclic voltammetry is achieved when the concentration of trans-stilbene, [t-Stb], appreciably exceeds the concentration of adventitious water or other proton sources. In particular, these conditions are met when [t-Stb] ≥ 0.1 M in thoroughly dehydrated and purified ILs, while in the presence of CH3CN, t-Stb(2-) still suffers fast irreversible protonation under these stilbene concentration conditions. The E0/•-(0) values (vs Fc(0/+)) for substituted trans-stilbenes in acetonitrile and (N111)(N112)BH2-NTf2 do not differ substantially, nor do the E0/•-(0) and E•-/2-(0) differences or other aspects of the voltammetric behavior.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app