Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

The trade-off between wiring cost and network topology in white matter structural networks in health and migraine.

The human brain organization of cortical networks has optimized trade-off architecture for the economical minimization of connection distance and maximizing valuable topological properties; however, whether this network configuration is disrupted in chronic migraine remains unknown. Here, employing the diffusion tensor imaging and graph theory approaches to construct white matter networks in 26 patients with migraine (PM) and 26 gender-matched healthy controls (HC), we investigated relationships between structural connectivity, cortical network architecture and anatomical distance in the two groups separately. Compared with the HC group, the patients showed longer global distance connection in PM, with proportionally less short-distance and more medium-distance; correspondingly, the patients showed abnormal global topology in their structural networks, mainly presented as a higher clustering coefficient. Moreover, the abnormal association between these two network features was also found. Intriguingly, the network measure that combined the nodal anatomical distance and network topology could distinguish PM from HC with high accuracy of 90.4%. We also demonstrated a high reproducibility of our findings across different parcellation schemes. Our results demonstrated that long-term migraine may result in a abnormal optimization of a trade-off between wiring cost and network topology in white matter structural networks and highlights the potential for combining spatial and topological aspects as a network marker, which may provide valuable insights into the understanding of brain network reorganization that could be attributed to the underlying pathophysiology resulting from migraine.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app