JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Hepatosteatosis and hepatic insulin resistance are blunted by argirein, an anti-inflammatory agent, through normalizing endoplasmic reticulum stress and apoptosis in diabetic liver.

OBJECTIVES: Insulin resistance represents a mechanism underlying defect metabolism of carbohydrate and lipid linked to inflammatory reactions in diabetic liver. We hypothesized that the changes may be secondary to endoplasmic reticulum (ER) stress, which could be alleviated by either argirein or valsartan.

METHODS: Hepatosteatosis in diabetic liver was induced in rats fed with a high-fat diet (HFD) for 12 weeks combined with a single low dose of streptozotocin (STZ 35 mg/kg, ip). Interventions (mg/kg/d, po)with either argirein (50, 100 and 200) or valsartan (12) were conducted in the last 4 weeks.

KEY FINDINGS: In diabetic liver fat was significantly accumulated in association with elevated hepatic glucose, serum insulin and homeostasis model assessment of insulin resistance value. Downregulated glucose transporter 4, insulin receptor substrate-1 and leptin receptor (P < 0.01) were found relative to normal, where DNA ladder, downregulated B cell lymphoma/leukemia-2, upregulated B cell lymphoma/leukemia-2 Associated X protein and upregulated ER stress chaperones such as Bip/GRP78 (also known as Binding Protein, BiP), PKR-like ER kinase (PERK), p-PERK/PERK and C/EBP homologous protein were significant. These abnormalities were significantly ameliorated by argirein and valsartan.

CONCLUSIONS: Hepatosteatosis induced by HFD/low STZ manifests insulin resistance and apoptosis, linked to an entity of low-grade inflammation due to activated ER stress sensors. With anti-inflammatory activity either argirein or valsartan blunts hepatosteatosis through normalizing ER stress and apoptosis in the diabetic liver.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app