Journal Article
Randomized Controlled Trial
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

A schizophrenia rat model induced by early postnatal phencyclidine treatment and characterized by Magnetic Resonance Imaging.

Better animal models are needed to aid the development of new medications to alleviate the cognitive deficits associated with schizophrenia. Growing evidence suggests neurodevelopmental insults and disturbances in NMDA receptor (NMDAR) signaling to be involved in the schizophrenia etiology. Acute administration of phencyclidine (PCP) induces schizophrenia-like symptoms in healthy volunteers and exacerbates symptoms in patients with schizophrenia. In this study, pharmacological Magnetic Resonance Imaging (phMRI) was used to evaluate if rats treated with 20mg/kg PCP on postnatal days 7, 9, and 11 (neoPCP), compared to saline (neoVeh), were hypersensitive to acute PCP administration in adulthood (acutePCP). Intravenous administration of 0.5mg/kg acutePCP produced robust and sustained relative cerebral blood volume (rCBV) increase in discrete frontal, neocortical, hippocampal, thalamic, and limbic brain structures in both neoPCP:acutePCP and neoVeh:acutePCP rats compared to acute saline treatment (Vehicle control group). AcutePCP injection significantly increased the rCBV response in the medial prefrontal cortex and nucleus accumbens compared to the Vehicle control group, without distinguishing neoPCP and neoVeh animals. However, at late time points (25-33min post acutePCP injection), neoPCP animals showed significantly higher rCBV values compared to the Vehicle control group, suggesting an altered sensitivity toward NMDAR blockade in adult rats subjected to this neurodevelopmental procedure. In combination with the observed cognitive deficits revealed in this animal model, the present findings indicate that altered NMDAR signaling might underlie the symptomatic changes seen in schizophrenia, adding to the construct and face validity of this model.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app