Add like
Add dislike
Add to saved papers

Targeting the PI3K/AKT/mTOR and Raf/MEK/ERK pathways in the treatment of breast cancer.

Alterations of signal transduction pathways leading to uncontrolled cellular proliferation, survival, invasion, and metastases are hallmarks of the carcinogenic process. The phosphatidylinositol 3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) and the Raf/mitogen-activated and extracellular signal-regulated kinase kinase (MEK)/extracellular signal-regulated kinase (ERK) signaling pathways are critical for normal human physiology, and also commonly dysregulated in several human cancers, including breast cancer (BC). In vitro and in vivo data suggest that the PI3K/AKT/mTOR and Raf/MEK/ERK cascades are interconnected with multiple points of convergence, cross-talk, and feedback loops. Raf/MEK/ERK and PI3K/AKT/mTOR pathway mutations may co-exist. Inhibition of one pathway can still result in the maintenance of signaling via the other (reciprocal) pathway. The existence of such "escape" mechanisms implies that dual targeting of these pathways may lead to superior efficacy and better clinical outcome in selected patients. Several clinical trials targeting one or both pathways are already underway in BC patients. The toxicity profile of this novel approach of dual pathway inhibition needs to be closely monitored, given the important physiological role of PI3K/AKT/mTOR and Raf/MEK/ERK signaling. In this article, we present a review of the current relevant pre-clinical and clinical data and discuss the rationale for dual inhibition of these pathways in the treatment of BC patients.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app