JOURNAL ARTICLE

Muscle metabolic determinants of exercise tolerance following exhaustion: relationship to the "critical power"

Weerapong Chidnok, Jonathan Fulford, Stephen J Bailey, Fred J Dimenna, Philip F Skiba, Anni Vanhatalo, Andrew M Jones
Journal of Applied Physiology 2013 July 15, 115 (2): 243-50
23640601
We tested the hypothesis that muscle high-energy phosphate compounds and metabolites related to the fatigue process would be recovered after exhaustion during recovery exercise performed below but not above critical power (CP) and that these changes would influence the capacity to continue exercise. Eight male subjects completed single-leg, knee-extension exercise to exhaustion (for ∼180 s) on three occasions, followed by a work-rate reduction to severe-intensity exercise, heavy-intensity exercise (<CP), or a 10-min passive recovery period, in random order. The muscle metabolic responses to exercise were assessed using (31)P magnetic resonance spectroscopy. There was a significant difference between the sustainable exercise duration during the recovery from exhaustive exercise between the <CP and >CP conditions (at least 10 min and 39 ± 31 s, respectively; P < 0.05). During passive recovery and <CP recovery exercise, muscle phosphocreatine concentration ([PCr]) increased rapidly after the exhaustion point, reaching ∼96% and ∼76% of baseline values, respectively, after 10 min (P < 0.05). Moreover, pH increased abruptly, reaching 7.0 ± 0.0 and 7.0 ± 0.2, respectively, after 10 min recovery (P < 0.05). However, during >CP recovery exercise, neither muscle [PCr] nor pH recovered, reaching ∼37% of the initial baseline and 6.6 ± 0.2, respectively. These results indicate that the muscle metabolic dynamics in recovery from exhaustive >CP differ according to whether the recovery exercise is performed below or above the CP. These findings confirm the importance of the CP as an intramuscular metabolic threshold that dictates the accumulation of fatigue-related metabolites and the capacity to tolerate high-intensity exercise.

Full Text Links

Find Full Text Links for this Article

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read
23640601
×

Save your favorite articles in one place with a free QxMD account.

×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"