JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Intravenous lipid emulsion entraps amitriptyline into plasma and can lower its brain concentration--an experimental intoxication study in pigs.

Intravenous lipid emulsion has been suggested as treatment for severe intoxications caused by lipophilic drugs, including tricyclic antidepressants. We investigated the effect of lipid infusion on plasma and tissue concentrations of amitriptyline and haemodynamic recovery, when lipid was given after amitriptyline distribution into well-perfused organs. Twenty anaesthetized pigs received amitriptyline intravenously 10 mg/kg for 15 min. Thirty minutes later, in random fashion, 20% Intralipid(®) (Lipid group) or Ringer's acetate (Control group) was infused 1.5 ml/kg for 1 min. followed by 0.25 ml/kg/min. for 29 min. Arterial and venous plasma amitriptyline concentrations and haemodynamics were followed till 75 min. after amitriptyline infusion. Then, frontal brain and heart apex samples were taken for amitriptyline measurements. Arterial plasma total amitriptyline concentrations were higher in the Lipid than in the Control group (p < 0.03) from 20 min. on after the start of the treatment infusions. Lipid emulsion reduced brain amitriptyline concentration by 25% (p = 0.038) and amitriptyline concentration ratios brain/arterial plasma (p = 0.016) and heart/arterial plasma (p = 0.011). There were no differences in ECG parameters and no severe cardiac arrhythmias occurred. Two pigs developed severe hypotension during the lipid infusion and were given adrenaline. In conclusion, lipid infusion, given not earlier than after an initial amitriptyline tissue distribution, was able to entrap amitriptyline back into plasma from brain and possibly from other highly perfused, lipid-rich tissues. In spite of the entrapment, there was no difference in haemodynamics between the groups.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app