Journal Article
Research Support, N.I.H., Extramural
Add like
Add dislike
Add to saved papers

PKA and ERK1/2 are involved in dopamine D₁ receptor-induced heterologous desensitization of the δ opioid receptor.

Life Sciences 2013 June 22
AIMS: Chronic administration of cocaine attenuates delta opioid receptor (DOPR) signaling in the striatum and the desensitization is mediated by the indirect actions of cocaine on dopamine D1 receptors (D1R). In addition, DOPR and D1R co-exist in some rat striatal neurons. In the present study, we examined the underlying mechanism of DOPR desensitization by D1R activation.

MAIN METHODS: NG 108-15 cells stably expressing HA-rat D1 receptor (HA-D1R) and Chinese hamster ovary (CHO) cells stably expressing both FLAG-mouse DOPR (FLAG-DOPR) and HA-D1R were used as the cell models. Receptor binding, [(35)S]GTPγS binding, receptor phosphorylation and western blot were conducted to examine DOPR affinity, expression, internalization, downregulation, desensitization, phosphorylation and phosphorylated ERK1/2.

KEY FINDINGS: Pretreatment with either the DOPR agonist DPDPE or the D1R agonist SKF-82958 for 30min attenuated DPDPE-stimulated [(35)S]GTPγS binding to G proteins, demonstrating homologous and heterologous desensitization of the DOPR, respectively. SKF-82958 pretreatment did not affect the level of DOPR or affinity of DOPR antagonist or agonists, nor did it induce phosphorylation, internalization or down-regulation of the DOPR in the CHO-FLAG-DOPR/HA-D1R cells. Pretreatment of cells with inhibitors of PKA, MEK1 and PI3K, but not PKC, attenuated SKF-82958-induced desensitization of the DOPR. The D1R agonist SKF-82958 enhanced phosphorylation of ERK1/2, and pretreatment with inhibitors of MEK1 and PI3K, but not PKA and PKC, reduced the effect. These results indicate that activation of ERK1/2 and/or PKA, but not PKC, is involved in D1 receptor-induced heterologous desensitization of the DOPR.

SIGNIFICANCE: This study provides possible mechanisms underlying D1R activation-induced DOPR desensitization.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app