JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Remodeling of dendrites and spines in the C1q knockout model of genetic epilepsy.

Epilepsia 2013 July
PURPOSE: To determine whether developmental synaptic pruning defects in epileptic C1q-knockout (KO) mice are accompanied by postsynaptic abnormalities in dendrites and/or spines.

METHODS: Immunofluorescence staining was performed on biocytin-filled layer Vb pyramidal neurons in sensorimotor cortex. Basal dendritic arbors and their spines were reconstructed with NEUROLUCIDA software, and their morphologic characteristics were quantitated in Neuroexplorer.

KEY FINDINGS: Seven to nine completely filled pyramidal neurons were analyzed from the wild-type (WT) and C1q KO groups. Compared to WT controls, KO mice showed significant structural modifications in their basal dendrites including (1) higher density of dendritic spines (0.60 ± 0.03/μm vs. 0.49 ± 0.03/μm dendritic length in WT, p < 0.05); (2) remarkably increased occurrence of thin spines (0.26 ± 0.02/μm vs. 0.14 ± 0.02/μm dendritic length in control, p < 0.01); (3) longer dendritic length (2,680 ± 159 μm vs. 2,119 ± 108 μm in control); and (4) increased branching (22.6 ± 1.9 vs. 16.2 ± 1.3 in WT at 80 μm from soma center, p < 0.05; 12.4 ± 1.4 vs. 8.2 ± 0.6 in WT at 120 μm from soma center, respectively, p < 0.05). Dual immunolabeling demonstrated the expression of putative glutamate receptor 2 (GluR2) on some thin spines. These dendritic alterations are likely postsynaptic structural consequences of failure of synaptic pruning in the C1q KO mice.

SIGNIFICANCE: Failure to prune excessive excitatory synapses in C1q KO mice is a likely mechanism underlying abnormalities in postsynaptic dendrites, including increased branching and alterations in spine type and density. It is also possible that seizure activity contributes to these abnormalities. These structural abnormalities, together with increased numbers of excitatory synapses, likely contribute to epileptogenesis in C1q KO mice.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app