JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Germline genetic variation modulates tumor progression and metastasis in a mouse model of neuroendocrine prostate carcinoma.

Neuroendocrine (NE) differentiation has gained increased attention as a prostate cancer (PC) prognostic marker. The aim of this study is to determine whether host germline genetic variation influences tumor progression and metastasis in C57BL/6-Tg(TRAMP)8247Ng/J (TRAMP) mouse model of aggressive NEPC. TRAMP mice were crossed to the eight progenitor strains of the Collaborative Cross recombinant inbred panel to address this. Tumor growth and metastasis burden were quantified in heterozygous transgene positive F1 male mice at 30 weeks of age. Compared to wild-type C57BL/6J-Tg(TRAMP)824Ng/J males, TRAMP x CAST/EiJ, TRAMP x NOD/ShiLtJ and TRAMP x NZO/HlLtJ F1 males displayed significant increases in tumor growth. Conversely, TRAMP x WSB/EiJ and TRAMP x PWK/PhJ F1 males displayed significant reductions in tumor growth. Interestingly, despite reduced tumor burden, TRAMP x WSB/EiJ males had an increased nodal metastasis burden. Patterns of distant pulmonary metastasis tended to follow the same patterns as that of local dissemination in each of the strains. All tumors and metastases displayed positive staining for NE markers, synaptophysin, and FOXA2. These experiments conclusively demonstrate that the introduction of germline variation by breeding modulates tumor growth, local metastasis burden, and distant metastasis frequency in this model of NEPC. These strains will be useful as model systems to facilitate the identification of germline modifier genes that promote the development of aggressive forms of PC.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app