JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Receptor affinity and extracellular domain modifications affect tumor recognition by ROR1-specific chimeric antigen receptor T cells.

PURPOSE: The adoptive transfer of T cells modified to express a chimeric antigen receptor (CAR) comprised of an extracellular single-chain antibody (scFV) fragment specific for a tumor cell surface molecule, and linked to an intracellular signaling module, has activity in advanced malignancies. The receptor tyrosine kinase-like orphan receptor 1 (ROR1) is a tumor-associated molecule expressed in prevalent B-lymphoid and epithelial cancers and is absent on normal mature B cells and vital tissues, making it a candidate for CAR T-cell therapy.

EXPERIMENTAL DESIGN: We constructed ROR1-CARs from scFVs with different affinities and containing extracellular IgG4-Fc spacer domains of different lengths, and evaluated the ability of T cells expressing each CAR to recognize ROR1(+) hematopoietic and epithelial tumors in vitro, and to eliminate human mantle cell lymphoma (MCL) engrafted into immunodeficient mice.

RESULTS: ROR1-CARs containing a short "Hinge-only" extracellular spacer conferred superior lysis of ROR1(+) tumor cells and induction of T-cell effector functions compared with CARs with long "Hinge-CH2-CH3" spacers. CARs derived from a higher affinity scFV conferred maximum T-cell effector function against primary CLL and ROR1(+) epithelial cancer lines in vitro without inducing activation-induced T-cell death. T cells modified with an optimal ROR1-CAR were equivalently effective as CD19-CAR-modified T cells in mediating regression of JeKo-1 MCL in immunodeficient mice.

CONCLUSIONS: Our results show that customizing spacer design and increasing affinity of ROR1-CARs enhances T-cell effector function and recognition of ROR1(+) tumors. T cells modified with an optimized ROR1-CAR have significant antitumor efficacy in a preclinical model in vivo, suggesting they may be useful to treat ROR1(+) tumors in clinical applications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app