JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Xanthotoxol exerts neuroprotective effects via suppression of the inflammatory response in a rat model of focal cerebral ischemia.

We previously found that xanthotoxol, one of the major active ingredients in Cnidium monnieri (L.) Cusson, exerts protective effects in a rat model of focal cerebral ischemia/reperfusion injury by alleviating brain edema, inhibiting the neutrophil infiltration, and decreasing the expression of intercellular adhesion molecule-1 (ICAM-1) and E-selectin. The present study was designed to further determine the possible mechanisms of action of neuroprotective properties of xanthotoxol after cerebral ischemia. Transient focal cerebral ischemia/reperfusion model in male Sprague-Dawley rats was induced by 2-h middle cerebral artery occlusion followed by 24-h reperfusion. Xanthotoxol (5 and 10 mg/kg) or vehicle were administered intraperitoneally at 1 and 12 h after the onset of ischemia. At 24 h after reperfusion, we assessed the effect of xanthotoxol on the blood-brain barrier (BBB) permeability, the production of pro-inflammatory mediators such as interleukin (IL)-1β, tumor necrosis factor (TNF)-α, IL-8, nitric oxide (NO), inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and the p65 subunit of the transcription factor, nuclear factor-κB (NF-κB) in the cortex after ischemic insult. The results showed that xanthotoxol treatment significantly attenuated BBB disruption, reduced the IL-1β, TNF-α, IL-8 and NO level, and attenuated the iNOS activity compared with vehicle-treated animals. Further, xanthotoxol treatment also significantly prevented the ischemia/reperfusion-induced increase in the protein expression of iNOS, COX-2, and the nuclear NF-κB p65. These results, taken together with those of our previous study, suggest that the neuroprotection may be attributed to the ability of xanthotoxol to attenuate the expression of pro-inflammatory mediators and thereby inhibit the inflammatory response after cerebral ischemia.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app