JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Size-correlated morpho-physiology of the aroid vine Rhodospatha oblongata along a vertical gradient in a Brazilian rain forest.

Plant Biology 2014 January
In this work, we analyse morpho-physiological modifications presented during the allomorphic growth of the aroid vine Rhodospatha oblongata Poepp throughout its ascent into the forest canopy. We test the hypothesis that morphological modifications in the root, shoot and leaf are followed by a gradual improvement of the xylem vascular system in order to increase water acquisition and transport as body size increases. The characterisation of these structural modifications was based on 30-35 specimens divided into six size classes. The dimensions of shoots, leaves and roots were quantified and qualified. The transition from the terrestrial to the epiphytic phase was followed by a simultaneous increase of leaf number and lamina area, together with increased length and diameter of the petiole. Furthermore, as the plant grows, the shoot internodes become shorter and thicker. However, occurrence of aerial roots is the most important characteristic in the ascending phase. In taller individuals, the increase in number of roots with wider xylem vessels guarantees an increased theoretical xylem hydraulic conductance for this growth phase. Along an acropetal direction of the same shoot, the diameter of xylem vessels increased, while the number of vessels per stele area decreased, in contrast with such allometric models as that of West, Brown and Enquist, showing that xylem vessel number and diameter taper in a reverse manner along the same direction. Such structural changes of R. oblongata allow improved foraging for light and water, facilitating the survival of bigger-sized plants of this vine in the canopy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app