JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
Add like
Add dislike
Add to saved papers

Targeted apoptotic effects of thymoquinone and tamoxifen on XIAP mediated Akt regulation in breast cancer.

X-linked inhibitor of apoptosis protein (XIAP) is constitutively expressed endogenous inhibitor of apoptosis, exhibit its antiapoptotic effect by inactivating key caspases such as caspase-3, caspase-7 and caspase-9 and also play pivotal role in rendering cancer chemoresistance. Our studies showed the coadministration of TQ and TAM resulting in a substantial increase in breast cancer cell apoptosis and marked inhibition of cell growth both in vitro and in vivo. Anti-angiogenic and anti-invasive potential of TQ and TAM was assessed through in vitro studies. This novel combinatorial regimen leads to regulation of multiple cell signaling targets including inactivation of Akt and XIAP degradation. At molecular level, TQ and TAM synergistically lowers XIAP expression resulting in binding and activation of caspase-9 in apoptotic cascade, and interfere with cell survival through PI3-K/Akt pathway by inhibiting Akt phosphorylation. Cleaved caspase-9 further processes other intracellular death substrates such as PARP thereby shifting the balance from survival to apoptosis, indicated by rise in the sub-G1 cell population. This combination also downregulates the expression of Akt-regulated downstream effectors such as Bcl-xL, Bcl-2 and induce expression of Bax, AIF, cytochrome C and p-27. Consistent with these results, overexpression studies further confirmed the involvement of XIAP and its regulatory action on Akt phosphorylation along with procaspase-9 and PARP cleavage in TQ-TAM coadministrated induced apoptosis. The ability of TQ and TAM in inhibiting XIAP was confirmed through siRNA-XIAP cotransfection studies. This novel modality may be a promising tool in breast cancer treatment.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app