Add like
Add dislike
Add to saved papers

AgingDB: A database for oxidative stress and calorie restriction in the study of aging.

Aging can be characterized in all living organisms as the inevitable biological changes that occur with advancing age. The aging process is time-dependent and leads to functional declines and increased incidences of disease. The underlying pathphysiologic processes of aging may best be explained using several interacting biological processes: genomic activity, oxidative stress, and age-related disease processes, all of which modify the rate and progression of aging. In this report, we describe a database, termed AgingDB, used to retrieve information on the biomolecules known to be modulated during the aging process and by the life-prolonging action of caloric restriction (CR). To enhance the usefulness of AgingDB, we include data collected from studies of CR's anti-oxidative action on gene expression, oxidative stress, and many chronic age-related diseases. We organized AgingDB into two sections A) apoptosis and the various mitochondrial biomolecules that play a role in aging; B) nuclear transcription factors known to be_sensitive to oxidative environment. AgingDB features an imagemap of biomolecular signal pathways and visualized information that includes protein-protein interactions of biomolecules. Authorized users can submit a new biomolecule or edit an existing biomolecule to reflect latest developments. By making available the most update information through AgingDB, we expect to assist researchers who are exploring the molecular basis of age-related changes modified by the life-prolonging action of CR. For the reader's convenience and accessibility, AgingDB is freely available at https://agingdb.bio.pusan.ac.kr/.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app