Add like
Add dislike
Add to saved papers

Facile, sensitive, and ratiometric detection of mercuric ions using GSH-capped semiconductor quantum dots.

Analyst 2013 May 8
Glutathione (GSH) capped CdTe semiconductor quantum dots (QDs) are applied for detecting mercuric ions (Hg(2+)) of trace quantity. The synthesis of GSH-capped CdTe (CdTe@GSH) QDs is cost-efficient and straightforward. We observed that Hg(2+) can quantitatively quench the fluorescence of CdTe@GSH QDs and further induce the slight redshift of emission peaks due to the quantum confinement effect. Detailed studies by spectroscopy, dynamic light scattering (DLS), and electrospray ionization mass spectrometry (ESI-MS) demonstrated that the competitive Hg(2+) binding with GSH makes the surface of CdTe QDs exposed, results in gradual aggregation, and quantitatively changes the photophysical properties of QDs. The whole procedure for detecting Hg(2+) by this protocol took less than 10 min. The experimental limit of detection (LOD) of Hg(2+) can be as low as 5 nM using CdTe@GSH with a low concentration (0.5 nM) because of the excellent fluorescent properties of QDs. This strategy may become a promising means to simply detect Hg(2+) in water with high sensitivity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app