JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Ultraviolet radiation synthesis of water dispersed CdTe/CdS/ZnS core-shell-shell quantum dots with high fluorescence strength and biocompatibility.

Nanotechnology 2013 May 25
This study explored a simple and fast method utilizing ultraviolet (UV) irradiation to synthesize CdTe/CdS/ZnS QDs in aqueous solution. Based on the reaction of photolysis and chemical deposition, the CdS and ZnS shell can be successively deposited around the thiol-capped CdTe cores through the interaction of Cd²⁺/Zn²⁺ and S²⁻ produced by UV irradiation. The effect of the UV irradiation time, the ratios of thioglycolic acid (TGA)/Cd and TGA/Zn on the shell formation, shell stability, and the photoluminescence (PL) intensity of the QDs, was systematically investigated. Keeping the ratio of TGA/Cd, increasing UV irradiation time from 30 to 120 s, the blue-shift of the fluorescence emission peak position of CdTe/CdS QDs was observed. As the irradiation time increased continuously from 120 to 300 s, the red-shift of the emission peak position was observed. In the total irradiation time, the PL intensity of all the samples was enhanced. By applying 300 s irradiation on the samples, the emission peak was blue-shifted at a fixed TGA/Cd ratio of 1:1 and red-shifted at the ratios of 2:1, 4:1, 8:1, and 13:1. The PL intensity reached its highest value at the ratio of 2:1. The effect of TGA/Zn ratio on ZnS shell formation showed a similar progress. Under an optimum synthesized reaction condition, the particle sizes of CdTe core, CdTe/CdS core-shell and CdTe/CdS/ZnS core-shell-shell QDs were 2.6 nm, 3.4 nm, and 4.6 nm respectively. This study confirmed that with the core-shell-shell structure, CdTe/CdS/ZnS QDs had high anti-oxidability, photostability, and low toxicity. Therefore they can be further used in cell imaging efficiently.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app