Reaction kinetics of CO2 absorption in to phosphonium based anion-functionalized ionic liquids

Burcu E Gurkan, Thomas R Gohndrone, Mark J McCready, Joan F Brennecke
Physical Chemistry Chemical Physics: PCCP 2013 May 28, 15 (20): 7796-811
The reaction kinetics between CO2 and trihexyl(tetradecyl)phosphonium ([P66614]) - based ionic liquids (ILs) with prolinate ([Pro]), 2-cyanopyrrolide ([2-CNpyr]), and 3-(trifluoromethyl)pyrazolide ([3-CF3pyra]) anions are studied at temperatures from 22-60 °C. The absorption of CO2 is carried out in a stirred reactor under pseudo first order conditions. ILs are diluted to concentrations of 0.05, 0.1 and 0.15 M with tetraglyme - a nonreactive, low volatility solvent with much lower viscosity than the ILs. Physical solubility of CO2 in the mixtures is calculated using correlations developed from CO2 solubility measurements in tetraglyme and the N2O-analogy for ILs and dilute IL solutions. The diffusivity of CO2 is estimated from viscosity-dependent correlations chosen after a thorough literature review. The results indicate partial first order reaction kinetics with respect to IL with values ranging from 19 500 L mol(-1) s(-1) ([P66614][Pro]) to 3200 L mol(-1) s(-1) ([P66614][3-CF3pyra]) at 22 °C. The second order reaction rate constants follow Arrhenius behavior with the highest activation energy of 43 kJ mol(-1) measured for [P66614][Pro]. ILs with aprotic heterocylic anions (AHA), on the other hand, show small activation energies of 18 and 11 kJ mol(-1) for [P66614][3-CF3pyra] and [P66614][2-CNpyr], respectively. The ILs studied in this work exhibit reactivity comparable to or higher than common aqueous amines. High reaction rates and tunable capacity make ILs, and AHA ILs in particular, attractive solvents for CO2 separations.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"