Cu2+-modulated cysteamine-capped CdS quantum dots as a turn-on fluorescence sensor for cyanide recognition

Tuanjai Noipa, Thawatchai Tuntulani, Wittaya Ngeontae
Talanta 2013 February 15, 105: 320-6
A new fluorescence sensor for detection of cyanide ions (CN(-)) in aqueous media based on the recovered fluorescence of cysteamine capped CdS quantum dots [Cys-CdS QDs]-Cu(2+) system was proposed. The fluorescence intensity of Cys-CdS QDs was quenched by Cu(2+) due to the binding of Cu(2+) to cysteamine on the surface of the QDs. The degree of fluorescence quenching was proportional to the concentration of Cu(2+). However, in the presence of CN(-), the fluorescence intensity of Cys-CdS QDs was found to be efficiently recovered. Experimental results showed that the pH of the buffer solution and the concentration of Cu(2+) affected the fluorescence intensity upon adding CN(-). Under the optimal condition, the recovered fluorescence intensity was linearly proportional to the increasing CN(-) concentration in the range 2.5-20 μM. The limit of detection and the limit of quantification were found to be 1.13 μM and 3.23 μM, respectively. In addition, among the tested ions, only CN(-) could turn on the fluorescence intensity suggesting that the [Cys-CdS QDs]-Cu(2+) system was a highly selective sensor for CN(-). Moreover, this proposed sensor was demonstrated to detect CN(-) in drinking water with satisfactory results.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"