Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Cortistatin inhibits migration and proliferation of human vascular smooth muscle cells and decreases neointimal formation on carotid artery ligation.

RATIONALE: Proliferation and migration of smooth muscle cells (SMCs) are key steps for the progression of atherosclerosis and restenosis. Cortistatin is a multifunctional neuropeptide belonging to the somatostatin family that exerts unique functions in the nervous and immune systems. Cortistatin is elevated in plasma of patients experiencing coronary heart disease and attenuates vascular calcification.

OBJECTIVE: To investigate the occurrence of vascular cortistatin and its effects on the proliferation and migration of SMCs in vitro and in vivo and to delimitate the receptors and signal transduction pathways governing its actions.

METHODS AND RESULTS: SMCs from mouse carotid and human aortic arteries and from human atherosclerotic plaques highly expressed cortistatin. Cortistatin expression positively correlated with the progression of arterial intima hyperplasia. Cortistatin inhibited platelet-derived growth factor-stimulated proliferation of human aortic SMCs via binding to somatostatin receptors (sst2 and sst5) and ghrelin receptor, induction of cAMP and p38-mitogen-activated protein kinase, and inhibition of Akt activity. Moreover, cortistatin impaired lamellipodia formation and migration of human aortic SMCs toward platelet-derived growth factor by inhibiting, in a ghrelin-receptor-dependent manner, Rac1 activation and cytosolic calcium increases. These effects on SMC proliferation and migration correlated with an inhibitory action of cortistatin on the neointimal formation in 2 models of carotid arterial ligation. Endogenous cortistatin seems to play a critical role in regulating SMC function because cortistatin-deficient mice developed higher neointimal hyperplasic lesions than wild-type mice.

CONCLUSIONS: Cortistatin emerges as a natural endogenous regulator of SMCs under pathological conditions and an attractive candidate for the pharmacological management of vascular diseases that course with neointimal lesion formation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app