Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

NF-κB and STAT3 inhibition as a therapeutic strategy in psoriasis: in vitro and in vivo effects of BTH.

Benzo[b]thiophen-2-yl-3-bromo-5-hydroxy-5H-furan-2-one (BTH) is a simple and interesting synthetic derivative of petrosaspongiolide M, a natural compound isolated from a sea sponge with demonstrated potent anti-inflammatory activity through inhibition of the NF-κB signaling pathway. In the present study, we report the in vitro and in vivo pharmacological effect of BTH on some parameters related to the innate and adaptive response in the pathogenesis of psoriasis. BTH inhibited the release of some of the key psoriatic cytokines such as tumor necrosis factor α, IL-8, IL-6, and CCL27 through the downregulation of NF-κB in normal human keratinocytes. Moreover, it impaired signal transducers and activators of transcription 3 (STAT3) phosphorylation and translocation to the nucleus, which resulted in decreased keratinocyte proliferation. These results were confirmed in vivo in two murine models of psoriasis: the epidermal hyperplasia induced by 12-O-tetradecanoylphorbol-13-acetate and the imiquimod-induced skin inflammation model. In both cases, topical administration of BTH prevented skin infiltration and hyperplasia through suppression of NF-κB and STAT3 phosphorylation. Our results confirm the pivotal role of both transcriptional factors in skin inflammation, as occurs in psoriasis, and highlight the potential of small molecules as therapeutic agents for the treatment of this skin disease, with BTH being a potential candidate for future drug research.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app