JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

miR-154 inhibits EMT by targeting HMGA2 in prostate cancer cells.

Epithelial-mesenchymal transition (EMT) is a crucial process that plays an important role in the invasion and metastasis of human cancers. High-mobility group AT-hook 2 (HMGA2) has been found to be involved in the EMT program, with its aberrant expression having been observed in a variety of malignant tumors. However, the mechanisms regulating HMGA2 expression remain incompletely understood. The objective of this study was to investigate whether mir-154 plays a critical role in EMT by regulating HMGA2. The expression levels of HMGA2 were examined in four samples of prostate cancer (PCa) tissue and adjacent non-tumorous tissue by Western blot analysis. The effects of forced expression of miR-154 or HMGA2 knockdown on PCa cells were evaluated by cell migration and invasion assays and Western blot analysis. HMGA2 was upregulated in the PCa tissue samples compared with the adjacent normal ones. Forced expression of miR-154 or HMGA2 knockdown significantly reduced the migratory and invasive capabilities of PCa cells in vitro and inhibited EMT gene expression, increased the levels of E-cadherin, an epithelial marker, and decreased the levels of vimentin, a mesenchymal marker. HMGA2 is a direct target gene of miR-154 by dual-luciferase reporter assay. Our findings suggest that miR-154 plays a role in regulating EMT by targeting HMGA2. Understanding the targets and regulating pathways of miR-154 may provide new insights into the underlying pathogenesis of PCa.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app