Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Expression of Th17-related genes in PHA/IL-2-activated human T cells by Fas signaling via caspase-1- and Stat3-dependent pathway.

Cellular Immunology 2013 Februrary
T helper 17 (Th17) cells, which produce interleukin 17 (IL-17), are involved in the pathogenesis of autoimmune diseases and inflammatory conditions. Th17 cells have been detected in many Fas ligand-positive tumors. This study investigates the expression of Th17-related genes in PHA/IL-2-activated human T cells upon Fas ligation. Activated T cells transiently express RORγt, IL-17A, and IL-17F. A subsequent Fas receptor stimulation or contact with FasL-expressing glioma cells significantly prolongs the induction of RORγt and Th17-related cytokines. Treatments with inhibitors of caspase-1 and Stat3 reduce the Fas-signal-associated induction of RORγt, IL-17A, and IL-17F, as well as the phosphorylation of Stat3. Although the ligation of Fas results in caspase-8 cleavage and ERK1/2 phosphorylation, inhibitors for caspase-8 and MEK have no effect on the expressions of RORγt, IL-17A, and IL-17F. The results suggest that the Fas signal favors the Th17-phenotypic features of human T cells through the caspase-1/Stat3 signaling pathway.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app