OPEN IN READ APP
JOURNAL ARTICLE
RANDOMIZED CONTROLLED TRIAL

Effects of static stretching on 1-mile uphill run performance

Ryan P Lowery, Jordan M Joy, Lee E Brown, Eduardo Oliveira de Souza, David R Wistocki, Gregory S Davis, Marshall A Naimo, Gina A Zito, Jacob M Wilson
Journal of Strength and Conditioning Research 2014, 28 (1): 161-7
23588487
It is previously demonstrated that static stretching was associated with a decrease in running economy and distance run during a 30-minute time trial in trained runners. Recently, the detrimental effects of static stretching on economy were found to be limited to the first few minutes of an endurance bout. However, economy remains to be studied for its direct effects on performance during shorter endurance events. The aim of this study was to investigate the effects of static stretching on 1-mile uphill run performance, electromyography (EMG), ground contact time (GCT), and flexibility. Ten trained male distance runners aged 24 ± 5 years with an average VO2max of 64.9 ± 6.5 mL·kg-1·min-1 were recruited. Subjects reported to the laboratory on 3 separate days interspersed by 72 hours. On day 1, anthropometrics and V[Combining Dot Above]O2max were determined on a motor-driven treadmill. On days 2 and 3, subjects performed a 5-minute treadmill warm-up and either performed a series of 6 lower-body stretches for three 30-second repetitions or sat still for 10 minutes. Time to complete a 1-mile run under stretching and nonstretching conditions took place in randomized order. For the performance run, subjects were instructed to run as fast as possible at a set incline of 5% until a distance of 1 mile was completed. Flexibility from the sit and reach test, EMG, GCT, and performance, determined by time to complete the 1-mile run, were recorded after each condition. Time to complete the run was significantly less (6:51 ± 0:28 minutes) in the nonstretching condition as compared with the stretching condition (7:04 ± 0:32 minutes). A significant condition-by-time interaction for muscle activation existed, with no change in the nonstretching condition (pre 91.3 ± 11.6 mV to post 92.2 ± 12.9 mV) but increased in the stretching condition (pre 91.0 ± 11.6 mV to post 105.3 ± 12.9 mV). A significant condition-by-time interaction for GCT was also present, with no changes in the nonstretching condition (pre 211.4 ± 20.8 ms to post 212.5 ± 21.7 ms) but increased in the stretching trial (pre 210.7 ± 19.6 ms to post 237.21 ± 22.4 ms). A significant condition-by-time interaction for flexibility was found, which was increased in the stretching condition (pre 33.1 ± 2 to post 38.8 ± 2) but unchanged in the nonstretching condition (pre 33.5 ± 2 to post 35.2 ± 2). Study findings indicate that static stretching decreases performance in short endurance bouts (∼8%) while increasing GCT and muscle activation. Coaches and athletes may be at risk for decreased performance after a static stretching bout. Therefore, static stretching should be avoided before a short endurance bout.

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Available on the App Store

Available on the Play Store
Remove bar
Read by QxMD icon Read
23588487
×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"